Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Redox Biol ; 69: 103018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199039

RESUMO

Supersulfides, which are defined as sulfur species with catenated sulfur atoms, are increasingly being investigated in biology. We recently identified pyridoxal phosphate (PLP)-dependent biosynthesis of cysteine persulfide (CysSSH) and related supersulfides by cysteinyl-tRNA synthetase (CARS). Here, we investigated the physiological role of CysSSH in budding yeast (Saccharomyces cerevisiae) by generating a PLP-binding site mutation K109A in CRS1 (the yeast ortholog of CARS), which decreased the synthesis of CysSSH and related supersulfides and also led to reduced chronological aging, effects that were associated with an increased endoplasmic reticulum stress response and impaired mitochondrial bioenergetics. Reduced chronological aging in the K109A mutant could be rescued by using exogenous supersulfide donors. Our findings indicate important roles for CARS in the production and metabolism of supersulfides-to mediate mitochondrial function and to regulate longevity.


Assuntos
Longevidade , Proteínas de Saccharomyces cerevisiae , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo
2.
Am J Transplant ; 24(2): 293-303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37734444

RESUMO

Donor shortage is a major problem in lung transplantation (LTx), and the use of lungs from elderly donors is one of the possible solutions in a rapidly aging population. However, the utilization of organs from donors aged >65 years has remained infrequent and may be related to a poor outcome. To investigate the molecular events in grafts from elderly donors early after LTx, the left lungs of young and old mice were subjected to 1 hour of ischemia and subsequent reperfusion. The left lungs were collected at 1 hour, 1 day, and 3 days after reperfusion and subjected to wet-to-dry weight ratio measurement, histological analysis, and molecular biological analysis, including RNA sequencing. The lungs in old mice exhibited more severe and prolonged pulmonary edema than those in young mice after ischemia reperfusion, which was accompanied by upregulation of the genes associated with inflammation and impaired expression of cell cycle-related genes. Apoptotic cells increased and proliferating type 2 alveolar epithelial cells decreased in the lungs of old mice compared with young mice. These factors could become conceptual targets for developing interventions to ameliorate lung ischemia-reperfusion injury after LTx from elderly donors, which may serve to expand the old donor pool.


Assuntos
Lesão Pulmonar , Transplante de Pulmão , Traumatismo por Reperfusão , Animais , Camundongos , Envelhecimento , Inflamação/patologia , Isquemia/patologia , Lesão Pulmonar/patologia , Transplante de Pulmão/métodos , Traumatismo por Reperfusão/patologia
3.
Clin Lung Cancer ; 25(1): e43-e51, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37985312

RESUMO

PURPOSE: The purpose of this study is to identify the clinical, genomic, and transcriptomic features of patients with lung adenocarcinoma (LUAD) harboring uncommon epidermal growth factor receptor (EGFR) mutations (UCM) compared with common EGFR mutations (CM). MATERIALS AND METHODS: In this multicenter retrospective cohort study, clinicopathological data were collected from 1047 consecutive patients who underwent complete surgical resection for LUAD, as well as EGFR mutation analysis, between 2005 and 2012 at 4 institutions. Differences in postoperative overall survival (OS) and recurrence-free survival (RFS) according to EGFR mutation status were evaluated. For the genomic and transcriptomic analyses, 5 cohorts from public databases were evaluated. RESULTS: Of 466 eligible patients, 415 (89.1%) and 51 (10.9%) had CM and UCM, respectively. The 5-year OS and RFS rates in the CM/UCM groups were 86.8%/77.0% and 74.8%/59.0%, respectively. OS and RFS were significantly shorter in the UCM than CM group (both P < .01). Multivariable analysis of OS showed that UCM was an independent prognostic factor (hazard ratio 1.72, 95% confidential interval 1.01-2.93). According to the genomic analysis, tumors with UCM had a significantly higher tumor mutation burden and TP53 mutation frequency. Transcriptomic analysis showed that the T-cell-inflamed gene signature, a biomarker of the treatment for immunotherapy, was significantly associated with tumors with UCM. CONCLUSION: UCM were associated with a poor prognosis in patients with surgically resected EGFR-mutated LUAD. Tumors with UCM had unique genomic and transcriptomic features suggestive of a tumor microenvironment responsive to immunotherapy.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Adenocarcinoma/patologia , Estudos Retrospectivos , Prognóstico , Mutação/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/cirurgia , Receptores ErbB/genética , Perfilação da Expressão Gênica , Microambiente Tumoral
4.
Redox Biol ; 65: 102834, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536084

RESUMO

The excessive inflammatory response of macrophages plays a vital role in the pathogenesis of various diseases. The dynamic metabolic alterations in macrophages, including amino acid metabolism, are known to orchestrate their inflammatory phenotype. To explore a new metabolic pathway that regulates the inflammatory response, we examined metabolome changes in mouse peritoneal macrophages (PMs) in response to lipopolysaccharide (LPS) and found a coordinated increase of cysteine and its related metabolites, suggesting an enhanced demand for cysteine during the inflammatory response. Because Slc7a11, which encodes a cystine transporter xCT, was remarkably upregulated upon the pro-inflammatory challenge and found to serve as a major channel of cysteine supply, we examined the inflammatory behavior of Slc7a11 knockout PMs (xCT-KO PMs) to clarify an impact of the increased cysteine demand on inflammation. The xCT-KO PMs exhibited a prolonged upregulation of pro-inflammatory genes, which was recapitulated by cystine depletion in the culture media of wild-type PMs, suggesting that cysteine facilitates the resolution of inflammation. Detailed analysis of the sulfur metabolome revealed that supersulfides, such as cysteine persulfide, were increased in PMs in response to LPS, which was abolished in xCT-KO PMs. Supplementation of N-acetylcysteine tetrasulfide (NAC-S2), a supersulfide donor, attenuated the pro-inflammatory gene expression in xCT-KO PMs. Thus, activated macrophages increase cystine uptake via xCT and produce supersulfides, creating a negative feedback loop to limit excessive inflammation. Our study highlights the finely tuned regulation of macrophage inflammatory response by sulfur metabolism.


Assuntos
Cistina , Lipopolissacarídeos , Camundongos , Animais , Retroalimentação , Macrófagos/metabolismo , Acetilcisteína , Enxofre/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo
5.
Sci Adv ; 9(33): eadg8631, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595031

RESUMO

Abundant formation of endogenous supersulfides, which include reactive persulfide species and sulfur catenated residues in thiols and proteins (supersulfidation), has been observed. We found here that supersulfides catalyze S-nitrosoglutathione (GSNO) metabolism via glutathione-dependent electron transfer from aldehydes by exploiting alcohol dehydrogenase 5 (ADH5). ADH5 is a highly conserved bifunctional enzyme serving as GSNO reductase (GSNOR) that down-regulates NO signaling and formaldehyde dehydrogenase (FDH) that detoxifies formaldehyde in the form of glutathione hemithioacetal. C174S mutation significantly reduced the supersulfidation of ADH5 and almost abolished GSNOR activity but spared FDH activity. Notably, Adh5C174S/C174S mice manifested improved cardiac functions possibly because of GSNOR elimination and consequent increased NO bioavailability. Therefore, we successfully separated dual functions (GSNOR and FDH) of ADH5 (mediated by the supersulfide catalysis) through the biochemical analysis for supersulfides in vitro and characterizing in vivo phenotypes of the GSNOR-deficient organisms that we established herein. Supersulfides in ADH5 thus constitute a substantial catalytic center for GSNO metabolism mediating electron transfer from aldehydes.


Assuntos
Aldeídos , Óxido Nítrico , Animais , Camundongos , Transporte de Elétrons , Catálise , Glutationa
6.
Nat Commun ; 14(1): 4476, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491435

RESUMO

Supersulphides are inorganic and organic sulphides with sulphur catenation with diverse physiological functions. Their synthesis is mainly mediated by mitochondrial cysteinyl-tRNA synthetase (CARS2) that functions as a principal cysteine persulphide synthase (CPERS). Here, we identify protective functions of supersulphides in viral airway infections (influenza and COVID-19), in aged lungs and in chronic lung diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF). We develop a method for breath supersulphur-omics and demonstrate that levels of exhaled supersulphides increase in people with COVID-19 infection and in a hamster model of SARS-CoV-2 infection. Lung damage and subsequent lethality that result from oxidative stress and inflammation in mouse models of COPD, IPF, and ageing were mitigated by endogenous supersulphides production by CARS2/CPERS or exogenous administration of the supersulphide donor glutathione trisulphide. We revealed a protective role of supersulphides in airways with various viral or chronic insults and demonstrated the potential of targeting supersulphides in lung disease.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , SARS-CoV-2 , Doença Pulmonar Obstrutiva Crônica/genética , Pulmão , Fibrose Pulmonar Idiopática/genética
7.
J Biochem ; 174(2): 131-142, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37039781

RESUMO

The Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (KEAP1-NRF2) system plays a central role in redox homeostasis and inflammation control. Oxidative stress or electrophilic compounds promote NRF2 stabilization and transcriptional activity by negatively regulating its inhibitor, KEAP1. We have previously reported that bromovalerylurea (BU), originally developed as a hypnotic, exerts anti-inflammatory effects in various inflammatory disease models. However, the molecular mechanism underlying its effect remains uncertain. Herein, we found that by real-time multicolor luciferase assay using stable luciferase red3 (SLR3) and green-emitting emerald luciferase (ELuc), BU potentiates NRF2-dependent transcription in the human hepatoblastoma cell line HepG2 cells, which lasted for more than 60 h. Further analysis revealed that BU promotes NRF2 accumulation and the transcription of its downstream cytoprotective genes in the HepG2 and the murine microglial cell line BV2. Keap1 knockdown did not further enhance NRF2 activity, suggesting that BU upregulates NRF2 by targeting KEAP1. Knockdown of Nfe2l2 in BV2 cells diminished the suppressive effects of BU on the production of pro-inflammatory mediators, like nitric oxide (NO) and its synthase NOS2, indicating the involvement of NRF2 in the anti-inflammatory effects of BU. These data collectively suggest that BU could be repurposed as a novel NRF2 activator to control inflammation and oxidative stress.


Assuntos
Bromisoval , Fator 2 Relacionado a NF-E2 , Humanos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Bromisoval/farmacologia , Hipnóticos e Sedativos/farmacologia , Estresse Oxidativo , Oxirredução , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico
8.
Antioxidants (Basel) ; 12(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37107243

RESUMO

Reactive sulfur species, or persulfides and polysulfides, such as cysteine hydropersulfide and glutathione persulfide, are endogenously produced in abundance in both prokaryotes and eukaryotes, including mammals. Various forms of reactive persulfides occur in both low-molecular-weight and protein-bound thiols. The chemical properties and great supply of these molecular species suggest a pivotal role for reactive persulfides/polysulfides in different cellular regulatory processes (e.g., energy metabolism and redox signaling). We demonstrated earlier that cysteinyl-tRNA synthetase (CARS) is a new cysteine persulfide synthase (CPERS) and is responsible for the in vivo production of most reactive persulfides (polysulfides). Some researchers continue to suggest that 3-mercaptopyruvate sulfurtransferase (3-MST), cystathionine ß-synthase (CBS), and cystathionine γ-lyase (CSE) may also produce hydrogen sulfide and persulfides that may be generated during the transfer of sulfur from 3-mercaptopyruvate to the cysteine residues of 3-MST or direct synthesis from cysteine by CBS/CSE, respectively. We thus used integrated sulfur metabolome analysis, which we recently developed, with 3-MST knockout (KO) mice and CBS/CSE/3-MST triple-KO mice, to elucidate the possible contribution of 3-MST, CBS, and CSE to the production of reactive persulfides in vivo. We therefore quantified various sulfide metabolites in organs derived from these mutant mice and their wild-type littermates via this sulfur metabolome, which clearly revealed no significant difference between mutant mice and wild-type mice in terms of reactive persulfide production. This result indicates that 3-MST, CBS, and CSE are not major sources of endogenous reactive persulfide production; rather, CARS/CPERS is the principal enzyme that is actually involved in and even primarily responsible for the biosynthesis of reactive persulfides and polysulfides in vivo in mammals.

9.
Redox Biol ; 60: 102624, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758466

RESUMO

NF-E2-related factor 2 (NRF2) plays a crucial role in the maintenance of cellular homeostasis by regulating various enzymes and proteins that are involved in the redox reactions utilizing sulfur. While substantial impacts of NRF2 on mitochondrial activity have been described, the precise mechanism by which NRF2 regulates mitochondrial function is still not fully understood. Here, we demonstrated that NRF2 increased intracellular persulfides by upregulating the cystine transporter xCT encoded by Slc7a11, a well-known NRF2 target gene. Persulfides have been shown to play an important role in mitochondrial function. Supplementation with glutathione trisulfide (GSSSG), which is a form of persulfide, elevated the mitochondrial membrane potential (MMP), increased the oxygen consumption rate (OCR) and promoted ATP production. Persulfide-mediated mitochondrial activation was shown to require the mitochondrial sulfur oxidation pathway, especially sulfide quinone oxidoreductase (SQOR). Consistently, NRF2-mediated mitochondrial activation was also dependent on SQOR activity. This study clarified that the facilitation of persulfide production and sulfur metabolism in mitochondria by increasing cysteine availability is one of the mechanisms for NRF2-dependent mitochondrial activation.


Assuntos
Fator 2 Relacionado a NF-E2 , Sulfetos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Sulfetos/metabolismo , Mitocôndrias/metabolismo , Cistina
10.
J Clin Biochem Nutr ; 71(3): 191-197, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36447486

RESUMO

Nitric oxide and reactive oxygen species regulate bone remodeling, which occurs via bone formation and resorption by osteoblasts and osteoclasts, respectively. Recently, we found that 8-nitro-cGMP, a second messenger of nitric oxide and reactive oxygen species, promotes osteoclastogenesis. Here, we investigated the formation and function of 8-nitro-cGMP in osteoblasts. Mouse calvarial osteoblasts were found to produce 8-nitro-cGMP, which was augmented by tumor necrosis factor-α (10 ng/ml) and interleukin-1ß (1 ng/ml). These cytokines suppressed osteoblastic differentiation in a NO synthase activity-dependent manner. Exogenous 8-nitro-cGMP (30 µmol/L) suppressed expression of osteoblastic phenotypes, including mineralization, in clear contrast to the enhancement of mineralization by osteoblasts induced by 8-bromo-cGMP, a cell membrane-permeable analog of cGMP. It is known that reactive sulfur species denitrates and degrades 8-nitro-cGMP. Mitochondrial cysteinyl-tRNA synthetase plays a crucial role in the endogenous production of RSS. The expression of osteoblastic phenotypes was suppressed by not only exogenous 8-nitro-cGMP but also by silencing of the Cars2 gene, indicating a role of endogenous 8-nitro-cGMP in suppressing the expression of osteoblastic phenotypes. These results suggest that 8-nitro-cGMP is a negative regulator of osteoblastic differentiation.

11.
FEBS Lett ; 596(16): 1981-1993, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35899372

RESUMO

Nuclear factor erythroid-derived 2-like 2 (NRF2) is a master transcription factor that coordinately regulates the expression of many cytoprotective genes and plays a central role in defense mechanisms against oxidative and electrophilic insults. Although increased NRF2 activity is principally beneficial for our health, NRF2 activation in cancer cells is detrimental. Many human cancers exhibit persistent NRF2 activation and such cancer cells rely on NRF2 for most of their malignant characteristics, such as therapeutic resistance and aggressive tumourigenesis, and thus fall into NRF2 addiction. The persistent activation of NRF2 confers great advantages on cancer cells, whereas it is not tolerated by normal cells, suggesting that certain requirements are necessary for a cell to exploit NRF2 and evolve into malignant cancer cells. In this review, recent reports and data on the genetic, metabolic and immunological features of NRF2-activated cancer cells are summarized, and prerequisites for NRF2 addiction in cancer cells and their therapeutic applications are discussed.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias , Carcinogênese , Regulação da Expressão Gênica , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Oxirredução , Estresse Oxidativo
12.
J Biochem ; 171(5): 567-578, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35137113

RESUMO

NRF2 is a transcription activator that plays a key role in cytoprotection against oxidative stress. Although increased NRF2 activity is principally beneficial for our health, NRF2 activation in cancer cells is detrimental, as it drives their malignant progression. We previously found that CCAAT/enhancer-binding protein B (CEBPB) cooperates with NRF2 in NRF2-activated lung cancer and enhances tumour-initiating activity by promoting NOTCH3 expression. However, the general contribution of CEBPB in lung cancer is rather controversial, probably because the role of CEBPB depends on cooperating transcription factors in each cellular context. To understand how NRF2 shapes the function of CEBPB in NRF2-activated lung cancers and its biological consequence, we comprehensively explored NRF2-CEBPB-coregulated genes and found that genes involved in drug metabolism and detoxification were characteristically enriched. Indeed, CEBPB and NRF2 cooperatively contribute to the drug resistance. We also found that CEBPB is directly regulated by NRF2, which is likely to be advantageous for the coexpression and cooperative function of NRF2 and CEBPB. These results suggest that drug resistance of NRF2-activated lung cancers is achieved by the cooperative function of NRF2 and CEBPB.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistência a Medicamentos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptores Fc , Transdução de Sinais
13.
Antioxidants (Basel) ; 10(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34943032

RESUMO

Aging is inevitable, but the inherently and genetically programmed aging process is markedly influenced by environmental factors. All organisms are constantly exposed to various stresses, either exogenous or endogenous, throughout their lives, and the quality and quantity of the stresses generate diverse impacts on the organismal aging process. In the current oxygenic atmosphere on earth, oxidative stress caused by reactive oxygen species is one of the most common and critical environmental factors for life. The Kelch-like ECH-associated protein 1-NFE2-related factor 2 (KEAP1-NRF2) system is a critical defense mechanism of cells and organisms in response to redox perturbations. In the presence of oxidative and electrophilic insults, the thiol moieties of cysteine in KEAP1 are modified, and consequently NRF2 activates its target genes for detoxification and cytoprotection. A number of studies have clarified the contributions of the KEAP1-NRF2 system to the prevention and attenuation of physiological aging and aging-related diseases. Accumulating knowledge to control stress-induced damage may provide a clue for extending healthspan and treating aging-related diseases. In this review, we focus on the relationships between oxidative stress and aging-related alterations in the sensory, glandular, muscular, and central nervous systems and the roles of the KEAP1-NRF2 system in aging processes.

14.
Nitric Oxide ; 116: 47-64, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534626

RESUMO

Sulfides and persulfides/polysulfides (R-Sn-R', n > 2; R-Sn-H, n > 1) are endogenously produced metabolites that are abundant in mammalian and human cells and tissues. The most typical persulfides that are widely distributed among different organisms include various reactive persulfides-low-molecular-weight thiol compounds such as cysteine hydropersulfide, glutathione hydropersulfide, and glutathione trisulfide as well as protein-bound thiols. These species are generally more redox-active than are other simple thiols and disulfides. Although hydrogen sulfide (H2S) has been suggested for years to be a small signaling molecule, it is intimately linked biochemically to persulfides and may actually be more relevant as a marker of functionally active persulfides. Reactive persulfides can act as powerful antioxidants and redox signaling species and are involved in energy metabolism. Recent evidence revealed that cysteinyl-tRNA synthetases (CARSs) act as the principal cysteine persulfide synthases in mammals and contribute significantly to endogenous persulfide/polysulfide production, in addition to being associated with a battery of enzymes including cystathionine ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, which have been described as H2S-producing enzymes. The reactive sulfur metabolites including persulfides/polysulfides derived from CARS2, a mitochondrial isoform of CARS, also mediate not only mitochondrial biogenesis and bioenergetics but also anti-inflammatory and immunomodulatory functions. The physiological roles of persulfides, their biosynthetic pathways, and their pathophysiology in various diseases are not fully understood, however. Developing basic and high precision techniques and methods for the detection, characterization, and quantitation of sulfides and persulfides is therefore of great importance so as to thoroughly understand and clarify the exact functions and roles of these species in cells and in vivo.


Assuntos
Técnicas de Química Analítica/métodos , Sulfeto de Hidrogênio/análise , Sulfetos/análise , Animais , Linhagem Celular , Humanos , Sulfeto de Hidrogênio/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/análise , Proteínas/química , Proteômica/métodos , Sulfetos/metabolismo
15.
Cell Rep ; 36(6): 109506, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380035

RESUMO

Peroxisome proliferator-activated receptor α (PPARα) controls hepatic lipid homeostasis and is the target of lipid-lowering fibrate drugs. PPARα activation represses expression of let-7 microRNA (miRNA), but the function of let-7 in PPARα signaling and lipid metabolism is unknown. In the current study, a hepatocyte-specific let-7b/c2 knockout (let7b/c2ΔHep) mouse line is generated, and these mice are found to exhibit pronounced resistance to diet-induced obesity and fatty liver. Let-7 inhibition by hepatocyte-specific let-7 sponge expression shows similar phenotypes as let7b/c2ΔHep mice. RNA sequencing (RNA-seq) analysis reveals that hepatic PPARα signaling is repressed in let7b/c2ΔHep mice. Protein expression of the obligate PPARα heterodimer partner retinoid X receptor α (RXRα) is reduced in the livers of let7b/c2ΔHep mice. Ring finger protein 8 (Rnf8), which is a direct target of let-7, is elevated in let7b/c2ΔHep mouse liver and identified as a E3 ubiquitin ligase for RXRα. This study highlights a let-7-RNF8-RXRα regulatory axis that modulates hepatic lipid catabolism.


Assuntos
Retroalimentação Fisiológica , MicroRNAs/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais , Animais , Sequência de Bases , Dependovirus/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Knockout , MicroRNAs/genética , Obesidade/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor X Retinoide alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
Sci Adv ; 7(17)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33883133

RESUMO

The recent report by Fan et al alleged that the ProPerDP method is inadequate for the detection of protein persulfidation. Upon careful evaluation of their work, we conclude that the claim made by Fan et al is not supported by their data, rather founded in methodological shortcomings. It is understood that the ProPerDP method generates a mixture of cysteine-containing and non-cysteine-containing peptides. Instead, Fan et al suggested that the detection of non-cysteine-containing peptides indicates nonspecific alkylation at noncysteine residues. However, if true, then such peptides would not be released by reduction and therefore not appear as products in the reported workflow. Moreover, the authors' biological assessment of ProPerDP using Escherichia coli mutants was based on assumptions that have not been confirmed by other methods. We conclude that Fan et al did not rigorously assess the method and that ProPerDP remains a reliable approach for analyses of protein per/polysulfidation.

17.
Cancers (Basel) ; 13(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535386

RESUMO

Cancer cells exhibit unique metabolic features and take advantage of them to enhance their survival and proliferation. While the activation of NRF2 (nuclear factor erythroid 2-like 2; NFE2L2), a CNC (cap'n'collar) family transcription factor, is effective for the prevention and alleviation of various diseases, NRF2 contributes to cancer malignancy by promoting aggressive tumorigenesis and conferring therapeutic resistance. NRF2-mediated metabolic reprogramming and increased antioxidant capacity underlie the malignant behaviors of NRF2-activated cancer cells. Another member of the CNC family, NRF1, plays a key role in the therapeutic resistance of cancers. Since NRF1 maintains proteasome activity by inducing proteasome subunit genes in response to proteasome inhibitors, NRF1 protects cancer cells from proteotoxicity induced by anticancer proteasome inhibitors. An important metabolite that activates NRF1 is UDP-GlcNAc (uridine diphosphate N-acetylglucosamine), which is abundantly generated in many cancer cells from glucose and glutamine via the hexosamine pathway. Thus, the metabolic signatures of cancer cells are closely related to the oncogenic and tumor-promoting functions of CNC family members. In this review, we provide a brief overview of NRF2-mediated cancer malignancy and elaborate on NRF1-mediated drug resistance affected by an oncometabolite UDP-GlcNAc.

19.
J Epidemiol ; 31(1): 65-76, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31932529

RESUMO

BACKGROUND: We established a community-based cohort study to assess the long-term impact of the Great East Japan Earthquake on disaster victims and gene-environment interactions on the incidence of major diseases, such as cancer and cardiovascular diseases. METHODS: We asked participants to join our cohort in the health check-up settings and assessment center based settings. Inclusion criteria were aged 20 years or over and living in Miyagi or Iwate Prefecture. We obtained information on lifestyle, effect of disaster, blood, and urine information (Type 1 survey), and some detailed measurements (Type 2 survey), such as carotid echography and calcaneal ultrasound bone mineral density. All participants agreed to measure genome information and to distribute their information widely. RESULTS: As a result, 87,865 gave their informed consent to join our study. Participation rate at health check-up site was about 70%. The participants in the Type 1 survey were more likely to have psychological distress than those in the Type 2 survey, and women were more likely to have psychological distress than men. Additionally, coastal residents were more likely to have higher degrees of psychological distress than inland residents, regardless of sex. CONCLUSION: This cohort comprised a large sample size and it contains information on the natural disaster, genome information, and metabolome information. This cohort also had several detailed measurements. Using this cohort enabled us to clarify the long-term effect of the disaster and also to establish personalized prevention based on genome, metabolome, and other omics information.


Assuntos
Terremotos/estatística & dados numéricos , Interação Gene-Ambiente , Angústia Psicológica , Adulto , Doenças Cardiovasculares/epidemiologia , Estudos de Coortes , Pesquisa Participativa Baseada na Comunidade , Desastres , Feminino , Genoma , Humanos , Incidência , Japão/epidemiologia , Estilo de Vida , Masculino , Metaboloma , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Inquéritos e Questionários , Adulto Jovem
20.
Antioxid Redox Signal ; 34(18): 1407-1419, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33198504

RESUMO

Aims: Persulfides and other reactive sulfur species are endogenously produced in large amounts in vivo and participate in multiple cellular functions underlying physiological and pathological conditions. In the current study, we aimed to develop an ideal alkylating agent for use in sulfur metabolomics, particularly targeting persulfides and other reactive sulfur species, with minimal artifactual decomposition. Results: We synthesized a tyrosine-based iodoacetamide derivative, N-iodoacetyl l-tyrosine methyl ester (TME-IAM), which reacts with the thiol residue of cysteine identically to that of ß-(4-hydroxyphenyl)ethyl iodoacetamide (HPE-IAM), a commercially available reagent. Our previous study revealed that although various electrophilic alkylating agents readily decomposed polysulfides, HPE-IAM exceptionally stabilized the polysulfides by inhibiting their alkaline hydrolysis. The newly synthesized TME-IAM stabilizes oxidized glutathione tetrasulfide more efficiently than other alkylating agents, including HPE-IAM, iodoacetamide, and monobromobimane. In fact, our quantitative sulfur-related metabolome analysis showed that TME-IAM is a more efficient trapping agent for endogenous persulfides/polysulfides containing a larger number of sulfur atoms in mouse liver and brain tissues compared with HPE-IAM. Innovation and Conclusions: We developed a novel iodoacetamide derivative, which is the most ideal reagent developed to date for detecting endogenous persulfides/polysulfides formed in biological samples, such as cultured cells, tissues, and plasma. This new probe may be useful for investigating the unique chemical properties of reactive persulfides, thereby enabling identification of novel reactive sulfur metabolites that remain unidentified because of their instability, and thus can be applied in high-precision sulfur metabolomics in redox biology and medicine. We did not perform any clinical experiments in this study. Antioxid. Redox Signal. 34, 1407-1419.


Assuntos
Acetamidas/síntese química , Alquilantes/síntese química , Metabolômica/métodos , Sulfetos/análise , Acetamidas/química , Alquilantes/química , Animais , Cromatografia Líquida , Células HEK293 , Humanos , Iodoacetamida/química , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Espécies Reativas de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA